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Abstract: Domain decomposition is a class of techniques that are designed to solve elliptic problems

on irregular domains and on multiprocessor systems. Typically, a domain is decomposed into many

smaller regular subdomains and the capacitance system governing the interface unknowns is solved

by some version of the preconditioned conjugate gradient method. In this paper, we show that for a

simple model problem - Poisson's equation on a rectangle decomposed into two smaller rectangles

- the capacitance system can be inverted exactly by fast Fourier transform. No itertion is needed.

An exact eigen-decomposition of the capacitance matrix also makes possible a comparison of various

preconditioners that have been proposed in the literature. For example, we show that in the limit

as the aspect ratio of the two rectangles tend to infinity, the preconditioner proposed by Golub- v

Mayers becomes exact, but the one proposed by Dryja does not. Both preconditioners, however,

are poor when the aspect ratio is small. . .
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1. Introduction
Domain decomposition is a clas of techniques that is designed to solve elliptic problems on

irregular domains and on multiprocessor systems. Typically, a domain is decomposed into many
smaller regular subdomains and the capacitance system governing the interface unknowns is solved.
This is a relatively old idea and can be traced to the Schwarz alternating procedure [9].

Such methods are attractive in many situations. In fact, the main reason for the resurgence of
this old idea is its obvious advantage in implementation on multiprocessor systems. Even in a se-
quential computing environment, a natural partition of the computational domain often exists, such -
as in dividing a domain with irregular geometry into regular subregions for which fast solvers exist,
or in dividing a problem with discontinous coefficients into subregions with constant coefficients. I
For this and other reasons, domain decomposition has received a lot of interest recently.

Since the capacitance system is expensive to evaluate and expensive to solve by direct methods,
many of the methods proposed so far in the literature employ some form of preconditioned conjugate
gradient (PCG) method for its solution. In each iteration, the product of the capacitance matrix
and a given vector is required, which can be evaluated by solving problems on the subdomains.

-. To minimize the number of subdomain solves, it is imperative to have a good preconditioner for
the capacitance matrix. Dryja[5] is among the first to introduce such a preconditioner for two
dimensional problems, which is in the form of a pseudo differential operator, namely, the square
root of the one dimensional discrete Laplace operator. Later, Golib and Mayers(8] proposed a
modification which significantly reduces the number of PC0 iterations needed. Many other methods
have been proposed along this approach, among which we mention [1, 2, 3, 6, 7, 81. -:

In this paper, we show that for a simple model problem - Poisson's equation on a rectangle
decomposed into two smaller rectangles - the capacitance system can be inverted exactly by fast
Fourier transform. No PCG iteration is needed. We derive an exact eigen-decomposition of the
capacitance matrix which makes possible a comparison of various preconditioners that have been
proposed in the literature. For example, we show that in the limit as the aspect ratio of the two
rectangles tend to infinity, the preconditioner proposed by Golub-Mayers becomes exact, but the
one proposed by Dryja does not. Both preconditioners, however, are poor when the aspect ratio is
small.

In Section 2, we introduce the model problem and derive the capacitance system for the
interface. The eigen-decomposition of the capacitance matrix is derived in Section 3. Comparisons
of various preconditioners are discussed in Section 4 and we close in Section 5 with some remarks
about extensions to irregular regions and divisions into more subdomains.
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Page 2

2. The Model Problem and the Interface System
Consider the following Poisson's equation :

Au = on i (2.1)

with boundary condition

U =g on 8Q

and where the domain n is as illustrated in Fig. 1.

3;

3 1 ,, a.

02 "

12

Fig. 1 The domain n and its partition

We partition n1 into two subdomains nt and nl2, with a common interface f13. We use a uniform
mesh with grid size h on f) with n internal grid points in the x-direction, i.e.,

1
7n.

We assume that 11 and 12 are integral multiples of h, with ml internal grid points in fl, in the
y-direction and m2 internal grid points in 112 , i.e.,

11 = (m, + 1)h
12 = (m 2 + )h .

" ' Consider a standard 5-point centered difference approximation to (2.1). If we order the unknowns r...*..
• -, i fi first, then those in 2 and finally those in (3, then the discrete solution vector u- (Ul, U2, u3) -. ,;

satisfies the following linear system

All 0 A13  U,
0 A22 A23  U2 f2 (2.2)* k. ~~~AT ATj A3) U)=( )

where the matrices All, A22, and A33 correspond to the discrete Laplacian on fl1, f72 and f03, and
N A13 and A 23 correspond to the coupling between the unknowns in 02, and n2 with those in n3-"[ 13P P g• .
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Applying block Gaussian Elimination to (2.2), we obtain the following system for the interface
unknowns u3 :

CU3 = f3 - A1AII A A 2  (2.3)

where
C - AA- A13 - AiA! A23. (2.4)

The right hand side of (2.3) can be evaluated by solving two subdomain problems, one each on 01 Q

and f02.

Note that C is expensive to evaluate because it requires 2n subdomain solves. Moreover, it is
generally dense and therefore a direct method for solving (2.3) could be prohibitively expensive. .,-:
The basic idea of domain decomposition is to solve the system (2.3) by preconditioned conjugate
gradient (PCG) methods. In applying the PCG method, one needs to evaluate the matrix-vector
product Ctw for a given vector w. From (2.4), it is easily seen that each evaluation of Cw requires
the solution of two subdomain problems. For example, the product -AT A' 1 A1 3 w can be computed
by solving the discretized version of (2.1) on fl, with homogeneous right hand side (i.e., the Laplace ".:,
equation) and the boundary condition u w w on f03, and then taking the solution on the first row
of grid points above f3..

3. The Elgen Decomposition of the Capacitance Matrix

In order to understand the performance of various preconditioners for C, it is necessary to
first analyze the eigen-structure of C. It turns out that for the model problem, an exact eigen-
decomposition of C can be derived by the use of Fourier analysis.

Define the vectors wi,j = 1,2,.. n by

w, vfii(sinjrh, sin 2jwh,.. .,sin nj7rh)T . (3.1)

Consider the product

Cwi a A33wj - A3 AflAi3Wj - A23A-lA 23wj (3.2)

Let us consider the term -A'A 1Ai3wj first. As mentioned earlier, this requires the solution of
the discrete Laplace equation

A fVi 0 on fl, (3.3)

with boundary condition

v =w i  on 03

and v = 0 on fl/3 (3.4)

Consider a solution vector v(z, y) of the form

v(ih,kh)= dk(w,), =dkv'2sin ijrh , (3.5)

where0_<i_<n+land0< k <5m+l.

The boundary condition (3.4) implies that

do= I and dm+i =O. (3.6)

Substituting (3.5) into (3.3), we get

(d-I - 2dk + dk+,) sin ijrh + d&(sin(i - l)jrh - 2sin ijrh + sin(i + l)jirh) 0.

K)
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It follows that the 4's satisfy the following difference equation:

d- -(2 + o,)d& + d4+i = 0 (3.7)

with the boundary condition (3.6) and where

a =-4 sin 2 w

The roots of the characteristic polynomial corresponding to (3.7) are

and r-1l+--L , a

4k = C~++ C2TrJ

The constants cl and C2 can be found by imposing the boundary conditions (3.6) which give

7C1+

and C2 r! - r

We therefore have A*- l3 adw13 A~ 1  w =dw

r... - ,.v7 (3.9)

I W

where
- (3.10)

r+q

By a similar computation, we have

-A -2'Am3W )w,. (3.11)

Finally, it can easily be verified that

(A33wj). sin(i - 1)jxh - 4 sin ijirh + sin(i + 1)jirh

and therefore
A33w, (-2 - ei)w,. (3.12)

Lt..
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Combining (3.9), (3.11) and (3.12), we obtain

CWj X AW,

where
gr+1r-+ r- - r +

1... . ,, - ,II,' )+( 1-"+1 (3.13)

which after some simplification gives
.+1 1,+yj"2+1 2 . .i+ , 17 J,. 3.

J= (i +  +- •3.14)

Therefore (A, wu) is an eigenpair of C. Since the vectors wj,j = 1, 2,' , n are orthonormal,
we have the exact eigen-decomposition of C.

Theorem 3.1. For the problem (2.1), the capacitance matrix C can be decomposed as

C WAWT

where
A = diag(\i,1A2 ,...

and
W =(WI, W2,..,W.). .-.:

Furthermore, W is orthogonal.

Note that the products Cw and C-1w can be computed by the Fast Fourier Transform (FFT)
(specifically, the sine transform). It follows that for the model problem, there is no need to use
a preconditioned conjugate gradient method for the interface system: we can solve it directly by
FFT.

4. Comparison of Preconditioners

Among the preconditioners proposed so far for C, two typical ones are:

MD Wdia9(s , ,. .D~wT (Dryja 151) (4.1)

where
AD -2Va (4.2)

and
MG Wdiag(Ag,G,. ., AG)W 7  (Golub-Mayers (81) (4.3) '

where

\q-- -2 +(4.4)
2-!.

Since we know the exact eigen-decomposition of C for the model problem, we can compare the
performance of these two preconditioners. Specifically, we are interested in the spectral condition
numbers K(M['C) and K(M'C), since these play a major role in the convergence rate of the
PCG method.
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It can easily be verified that

r+>1, 0<r_<l and j<I. (4.5)

Therefore, it follows immediately from (3.14) that

U2

lrn A,.-2 u, .(4.6)

In other words, for fixed h, as the "aspect ratios" of fl1 and f12 tend to infinity, A. -* A,. It follows
that

rm K(M 1 C) - . (4.7)I M2-00

Next let us consider the case where 11 and 12 are fixed but h -- 0 (i.e., n, ml and m2 -- oo). Let
the eigenvalues of MjtC be denoted by /p, where by (4.4) and (3.14)

I + I+

I M - ,+, + _ +) (4.8)

It can be verified that p is a decreasing function of j, and therefore ,*

K(Mj'¢) _(4.9)
An

Consider the term "'+' in the limit as h - 0 for l and 12 fixed. We have t.

= (1 '26

where

6 VI + o/ "'
1+*'1/2

Making use of the fact that -"
Jim (1 I"+ :rfx / - "mx- 0 f (z ) ,  (4.10) , -

we have
im It"' e-

where 6o1'6

2sin -.6h

Therefore, we have

im =1 1 + e-2  1 + e - 2 12(

"" . "- , " " - , -" " "- +"1"-
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On the other hand, it is easy to verify that

lim o,. 4

and
- lim 3n -f 2vf

h-. + 2vf <

Therefore,
lim -.-- + 0, and lim -y'2+1 0
h-o A-0

and so
limn = 1. (4.12)

Combining (4.11) and (4.12) we have

* Theorem 4.1. For any 11 and 12,

urn K(MIC) - I1(1 + e- 2 '1 ' 1 + e 2 )  ,.
h-o G ) (- -, 2 ,1 + 1 1- -252)

Note that the limiting value of K(Mj'C) is independent of h. Theorem 4.1 also shows that
in the limit h -* 0, the rate with which K(M 'C) --- 1 is exponential in 11 and 12. On the other
hand, if 11 and 12 are small then the limiting value of K(M,3C) is given by

lim (jC+
2v 11 12.

and thus grows like and

Next, we consider K(ML1 C). The eigenvalues pi of ML1 C are given by

1 1+ / + 1+ 77+n/-
1+I +' (4.13),i -( .,M1 +1 + - "+) + L4..

Moreover, we have AG

1< I + L- < \/2.
jj

The following result follows immediately.

Theorem 4.2. For any h, 11 and 12

I K(Af )
vK .'C) )'

and
lir K(At'C) -V

12-00
h-O

* .* * . . .. . . . .. . . . . . * . - . . . . -.
:7~: 1.i~a~" o ,o.
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We thus see that the limiting value of K(ML1 C) is also independent of h, but this value does
not tend to unity even as 11 and 12 tend to infinity. This is a fundamental limitation of MD. -

Plots of K(M3IC) and K(MLIC) for various values of h and I in the case where 11 = 12= are
given in Figures 1 and 2. It is seen that when the aspect ratio is approximately one or larger, MG

is a pretty good preconditioner for C. But for small aspect ratios, both MG and MD deteriorate
rapidly as preconditioners for C. It is also interesting to note that K(Mj 1 C) tends to its asymptotic
value even for very large values of h and that K(MD-'C) has a smaller value for larger values of h.

Bjorstad and Widlund[1] proposed a preconditioner MB (referred to as the 'excellent method"
in their paper) which corresponds to the capacitance matrix C assuming 11 = l. By employing
special symmetry in the case where l = 12, they derived a method for computing CM;1 uw exactly
for a given vector w by solving Neumann problems on the subdomains. Obviously, this method
is exact when l1 = 12 and in general it should be slightly better the Golub-Mayers preconditioner
because it takes into account the aspect ratio of one of the subdomains.

5. Concluding Remarks

Our analysis provides some insight into the structure of the capacitance matrix system, which
is central to the domain decomposition method. The exact eigen-decomposition of this matrix in
the simple case considered in this paper allows us to compare the performance of various precon-
ditioners. It also illustrates somewhat more clearly the origin of the pseudo differential operator . i..
used in Dryja's original precondition:, and the way in which the Golub-Mayers preconditioner is
an improvement. Our analysis reveals for the first time the dependence of the performance of these
preconditioners on the aspect ratios of the subdomains. Based on the results here, it is straightfor-
ward to derive a preconditioner for irregular domains -;:ich takes into account 6he aspect ratios of .

the subdomains. Furthermore, the knowledge of the eigen-decomposition of C makes it possible to
construct a direct domain-decomposed fast Poisson solver on a rectangle divided into many stripsand boxes. We referred the interested readers to [4].

Acknowledgement: The author thanks Diana Resasco for helpful discussions and producing
the plots in this paper.
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Figure 1: Dependence of K(Mj 1 C) on h and aspect ratio !
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Figure 2: Dependence of K(M~LC) on h and aspect ratio I
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